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The evolution of a uniformly sheared thermally
stratified turbulent flow

By PAUL PICCIRILLO†  CHARLES W. VAN ATTA‡

Department of Applied Mechanics and Engineering Sciences, University of California, San Diego,
La Jolla, CA 92093, USA
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Experiments were carried out in a new type of stratified flow facility to study the
evolution of turbulence in a mean flow possessing both uniform stable stratification
and uniform mean shear.

The new facility is a thermally stratified wind tunnel consisting of ten independent
supply layers, each with its own blower and heaters, and is capable of producing
arbitrary temperature and velocity profiles in the test section. In the experiments, four
different sized turbulence-generating grids were used to study the effect of different
initial conditions. All three components of the velocity were measured, along with the
temperature. Root-mean-square quantities and correlations were measured, along with
their corresponding power and cross-spectra.

As the gradient Richardson number Ri¯N#}(dU}dz)# was increased, the down-
stream spatial evolution of the turbulent kinetic energy changed from increasing, to
stationary, to decreasing. The stationary value of the Richardson number, Ri

cr
, was

found to be an increasing function of the dimensionless shear parameter Sq#}ε (where
S¯dU}dz is the mean velocity shear, q# is the turbulent kinetic energy, and ε is the
viscous dissipation).

The turbulence was found to be highly anisotropic, both at the small scales and at
the large scales, and anisotropy was found to increase with increasing Ri. The evolution
of the velocity power spectra for Ri%Ri

cr
, in which the energy of the large scales

increases while the energy in the small scales decreases, suggests that the small-scale
anisotropy is caused, or at least amplified, by buoyancy forces which reduce the
amount of spectral energy transfer from large to small scales. For the largest values of
Ri, countergradient buoyancy flux occurred for the small scales of the turbulence, an
effect noted earlier in the numerical results of Holt et al. (1992), Gerz et al. (1989), and
Gerz & Schumann (1991).

1. Introduction

Stable stratification is a ubiquitous feature of turbulent shear flows in nature and in
technological applications. Geophysical examples include flow in the ocean thermocline
(Gregg 1987), or in capping inversions in the atmosphere (Singh Khalsa & Greenhut
1987). Engineering applications include dispersal of waste pollutants into stratified
coastal waters or into the atmosphere. The physics of turbulent mixing in such flows
can be usefully studied by considering the simplified case of a developing laterally
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homogeneous turbulent shear flow with constant gradients of mean velocity and
density. In the present study, we experimentally examine such a flow, to determine how
the evolution and structure of the turbulence, and the resultant fluxes of buoyancy and
momentum, are affected by the presence of stable stratification.

Owing to insufficient test section length, early experimental work studying turbulent
evolution in purely sheared flows, such as that of Rose (1966, 1970) or Champagne,
Harris & Corrsin (1970) found the turbulent kinetic energy to approach a constant
level downstream of a generating grid. Later work by Harris, Graham & Corrsin
(1977), Rohr et al. (1988a), and Tavoularis & Karnik (1989) established clearly that,
with sufficient test section length and with a sufficient amount of shear, the turbulent
kinetic energy will grow downstream of a generating grid. The experiments of
Tavoularis & Corrsin (1981a, b) and Budwig, Tavoularis & Corrsin (1985) showed that
this behaviour also exists in the case of passive stratification. Computational work,
such as that by Rogallo (1981), Feiereisen et al. (1982), Rogallo & Moin (1984), and
Rogers, Moin & Reynolds (1986), who also added passive scalars, show good
agreement with the experimental results, and present much information on aspects of
the turbulent evolution not easily investigated in the laboratory, such as the existence
of large-scale coherent vortex structures caused by the interaction of the mean shear
with the turbulence.

The effects of a stable density stratification on the evolution of turbulence have been
thoroughly investigated for a uniform mean flow. Experiments using salt stratification
in water by Stillinger, Helland & Van Atta (1983), Itsweire, Helland & Van Atta (1986),
Barrett & Van Atta (1989), Yap & Van Atta (1993), Liu (1995), and Fincham,
Maxworthy & Spedding (1997), and experiments using temperature stratification in air
by Lienhard & Van Atta (1990), Yoon & Warhaft (1990), and Thoroddsen & Van Atta
(1992, 1996) have shown conclusively that the buoyancy forces created by the stable
stratification strongly suppress the vertical component of the turbulent kinetic energy.
Also, the buoyancy flux in the flow, initially downgradient due to turbulent mixing,
becomes countergradient at the largest scales of the turbulence, as fluid parcels begin
to move back to their equilibrium positions in the flow. Thoroddsen & Van Atta (1996)
found that stratification also produced an unexpected rapid onset of anisotropy in the
small scales of their decaying turbulence. Complementary results, consistent with the
experimental findings, have been obtained in many numerical simulations, including
those of Riley, Metcalfe & Weissman (1981), and Herring & Metais (1989).

Experiments combining uniform mean shear and stable stratification were carried
out in salt-stratified water by Rohr et al. (1988b). They found that at a critical value
Ri

cr
of the gradient Richardson number Ri¯N#}(dU}dz)# (N¯ [(g}T

!
) (dT}dz)]"/# is

the Brunt–Va$ isa$ la$ frequency) of 0±25³0±05, the turbulent kinetic energy of the flow
became independent of the development distance x, the coordinate in the mean flow
direction. They also found that the primary means by which buoyancy affected the
turbulence was by reducing turbulent production, inferred to be associated with
buoyancy suppression of the spatial coherence of the large eddies in the flow.

Numerical simulations carried out by Gerz, Schumann & Elghobashi (1989), Gerz
& Schumann (1991), Schumann & Gerz (1995), and Kaltenbach, Gerz & Schumann
(1994) suggest that the critical value of Ri can be lower than the 0±25³0±05 given by
Rohr et al. (1988b). They found the velocity strain rates to be less anisotropic than the
r.m.s. velocity fluctuations. They found countergradient velocity density fluxes, which
were not seen by Rohr et al. (1988b), but only for large Ri (greater than 0±33) and high
Prandtl number. These density fluxes occurred primarily at small scales, unlike those
in the unsheared experiments of Lienhard & Van Atta (1990), Yoon & Warhaft (1990),
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and Thoroddsen & Van Atta (1992, 1996), where the countergradient heat fluxes were
produced by large-scale transport. Also, Gerz & Schumann (1991) found both the
velocity and temperature dissipation to be greater than in the unsheared case. They
attributed this to shear-induced gravity wave breaking, as suggested by Hunt, Stretch
& Britter (1988), and found experimentally by Britter (1988).

Another set of simulations was carried out by Holt, Koseff & Ferziger (1992), and
extended by Ivey et al. (1992) and Itsweire et al. (1993). In them, the critical Ri was
found to be an increasing function of the initial turbulence Reynolds number ReΛi

¯
µ«Λ/ν, where Λ is the integral scale of the turbulence. The velocity strain rates were
found to be more anisotropic than the velocity r.m.s. fluctuations, and countergradient
heat fluxes were found at large Ri, again primarily at small scales. The anisotropy of
r.m.s. velocity fluctuations was found to be at a maximum at the Ri where the net
vertical density flux changed sign. The subsequent net countergradient flux then
reduced the amount of anisotropy, a result consistent with those of Gerz et al. (1989).
Finally, Holt et al. found that at Ri

cr
, the one-dimensional velocity spectra were not

constant, as the large scales were gaining energy while the small scales were losing
energy, consistent with the results of Rohr et al. (1988b). Recent simulations carried
out by Jacobitz, Sarkar & Van Atta (1994, 1996) found Ri

cr
to be a strong function of

the dimensionless shear parameter Sq#}ε (where S¯dU}dz is the mean velocity shear,
q# is the turbulent kinetic energy, and ε is the viscous dissipation) as well as a function
of the initial Reynolds number Rλ ¯ qλ}ν. Here, λ¯ (5q#ν}ε)"/# is the Taylor
microscale.

The present facility and experiments were largely motivated by the desire to obtain
better data than was possible in the water tunnel of Rohr et al. (1988b), for a
substantially different ratio of viscous to scalar diffusivity (the Prandtl number for air
is 0±7, while the Schmidt number for salt-stratified water is around 700). Comparing the
numerical simulations with the experiments raised several questions, suggesting
interesting new avenues for experimentation. These included determining (a) the
dependence of Ri

cr
on the shear parameter Sq#}ε and ReΛ, (b) the effect of the buoyancy

on the anisotropy of the large and small scales of the turbulence, and (c) whether the
small-scale countergradient cospectral buoyancy flux and the countergradient
Reynolds stress results found in the simulations would occur in a physical experiment.
We did not realize the importance of the shear parameter Sq#}ε, despite its prominence
in the non-stratified case, until after the present experiments were completed. As the
DNS results of Jacobitz et al. (1995) became available during the preparation of this
paper, interpretation of the experimental results was greatly enhanced by insights from
these DNS.

Because of the well-resolved results achieved by Lienhard & Van Atta (1990) and
Thoroddsen & Van Atta (1992, 1996), it was decided to use thermally stratified air as
the medium in which to conduct our experiments. We note that such an approach was
also adopted by Webster (1964) in his pioneering experiments on a density-stratified
shear flow. Owing to the unique requirements of the experiments to be performed, a
new type of facility was designed and built. With this new facility, we have performed
the first experiments in air which have both velocity shear and strong thermal
stratification, and for which the development distance is sufficiently long to observe
growing, decaying, or constant levels of turbulent kinetic energy.

In the remainder of this section, we will discuss the equations of motion of our study.
In §2, the experimental procedure will be outlined. In §3, we examine the second-order
moments of the turbulence, with our primary focus being on the factors influencing the
critical value of Ri. In §4, we discuss the anisotropy of the flow. In §5, we present the
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spectral and cospectral behaviour of the turbulence, and in §6, we will discuss our
results and attempt to draw some overall conclusions.

1.1. The equations of motion

We assume that the mean flow is incompressible and transversely homogeneous. We
also assume that the Boussinesq approximation is valid in this case, allowing us to
remove the fluctuating fluid density from the inertia terms in the equations. Finally, we
assume that the triple-correlation divergence terms are negligibly small, as found
experimentally for the unsheared case by Lienhard (1988). The resulting equations for
each component of the turbulent kinetic energy are
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where u, �, and w are the streamwise, lateral, and vertical fluctuating velocity
components, respectively, and the overbar denotes time averaging. Summing these
equations, we arrive at the turbulent kinetic energy evolution equation for sheared,
buoyancy-affected turbulence:
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) is the viscous dissipation. It should also be

noted that we have changed the density term (g
i
}ρ

!
) u

i
ρ into a temperature term using

the perfect gas equation, since our stratifying agent will be temperature.
In (4), the turbulent kinetic energy has one direct source term, the production term,

and two sink terms, the buoyancy term and the viscous dissipation. Thus, in order for
the turbulence to grow downstream, the source term must be larger than the buoyancy
term and the dissipation together. This suggests that small changes in the value of the
uw correlation will have a large effect on the behaviour of the turbulent kinetic energy.
The anisotropic nature of the source and sink terms can be clearly seen in (1), (2), and
(3), where the production term occurs only in the equation for u#, while the buoyancy
term occurs only in the w# equation.

The evolution of the scalar variance is given by

U
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Here, χ¯α(¥θ}¥x
j
) (¥θ}¥x

j
) is the scalar dissipation. For downgradient turbulent

mixing, the buoyancy flux term is a sink of kinetic energy and a source of scalar
variance.

2. Experimental procedure

The experiments were performed in a new type of thermally stratified wind tunnel,
shown in figure 1. It consists of ten separate horizontal layers, each with its own blower
and electrical heater assembly, and is capable of producing flows with N up to
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F 1. Sketch of the stratified-shear-flow wind tunnel (hose detail not shown for clarity).

Run number Ri Shear (s−") N (rad s−")

1 0 4±45 0
2 0±04 4±45 0±91
3 0±08 4±45 1±24
4 0±12 4±45 1±55
5 0±19 4±45 1±98
6 0±44 3±35 2±23

T 1. Experimental runs

2±5 rad s−" and mean velocity shears (dU}dz) of up to 5 s−" at a nominal mean velocity
of 2 m s−". The mean vertical velocity and temperature profiles generated by the tunnel
were found to depart from linearity by no more than 0±5 °C and 3 cm s−". Also,
turbulence generated in the tunnel was found to be transversely and vertically
homogeneous to within about 15%. For more details concerning the design of the
tunnel and performance, see Piccirillo (1993) and Piccirillo & Van Atta (1996).

The main parameters varied in our study were the Richardson number Ri and the
shear parameter Sq#}ε. Tunnel operating limitations precluded a significant variation
in Reynolds number. The turbulence was generated by one of four biplanar grids, with
grid mesh spacings of 5±08, 2±54, 1±45 and 0±64 cm, with constant solidity. The differing
grid sizes created differing values of Sq#}ε and ReΛi

, the initial Reynolds number of the
turbulence. The test section in which the turbulence evolved is 5±49 m long, with a
cross-section that is initially 30±5 cm high by 61 cm wide. The top and bottom walls of
the test section are adjusted for boundary layer growth so that the mean velocity at the
centreline of the test section remains nearly constant throughout its length.

Data were taken using the cross-wire}cold-wire technique developed by Lienhard
(1988) and Lienhard & Van Atta (1990). Both uw-measurements, where the vertical
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velocity is measured, and u�-measurements, where the lateral velocity is measured,
were performed. For each run, nineteen downstream measuring stations were used for
uw-measurements, with seven of these also used for u�-measurements. All of the runs
described here were performed with the probe on the centreline of the test section.

The values of S¯dU}dz, N, and Ri for the different Ri runs are given in table 1. The
mean centreline velocity in all of the runs was approximately 1±90 m s−", except for
Ri¯ 0±44, where the mean velocity was approximately 2±20 m s−". This difference in
velocity had no noticeable effect on the behaviour of the turbulence for any of the mesh
sizes used. Also, in the Ri¯ 0±44 runs, the mean velocity shear was smaller than in the
other runs.

In this paper we can present only a small amount of the experimental results. Tables
providing results for all of the experiments have been archived with the Journal of Fluid
Mechanics, and are available upon request from the Editorial Office. Many additional
figures can be found in Piccirillo (1993). Information on some mislabelling which
occurred in these thesis figures is provided along with the tables, which are correctly
labelled.

To compute the turbulent kinetic energy at stations where u�-measurements were not
taken, �«}w« was calculated for the points where u�- and uw-measurements were taken,
where the primes signify the r.m.s. values of the fluctuations (which are equal to the
square roots of the variances of these quantities) ; �«}w« was then estimated for the
remaining points by interpolation, and the resulting estimate for �« then calculated
from w«. This estimate, �!

e
was then used to calculate q. In order to estimate a value for

the critical Ri, Ri
cr
, the q-data were examined, for each Ri, from 3 m downstream of

the generating grid to the end of the test section. If the data were constant to within
2%, that Ri was chosen as Ri

cr
.

The dissipation was estimated using the three measured strain rates via the formula
(Piccirillo 1993)
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For locations where the lateral velocity strain rate was not measured, it was estimated
using an interpolation scheme identical to the one used for estimating the lateral
velocity fluctuations discussed above.

3. Behaviour of second-order single-point moments

3.1. Turbulent �elocity and temperature moments

The evolution of q}U¯ (u#�#w#)"/#}U versus downstream position as a function of
Ri is shown for the 1±45 cm grid in figure 2. As has been seen by previous researchers,
as Ri increases, q changes behaviour, from strongly increasing at Ri¯ 0 to decreasing
at Ri¯ 0±44. At Ri¯ 0, q grows in the exponential manner seen by Rohr et al. (1988a).
For Ri¯ 0±44, the decay of q is slower than in the case of unforced, initially isotropic
turbulence, suggesting that the mean shear is still strongly influencing the evolution of
the turbulence.

The behaviour of the individual components of q is very similar to that of q. The only
important difference between the three components is the location of their minimum
value in the cases where they subsequently increase. The minima for u«, w«, and �« are
at τ¯ (x}U ) (dU}dz) of 2±9–3±5, 4±6 and 3±5 respectively. The slower evolution of w«
is due to buoyancy forces influencing the pressure redistribution of the velocity
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F 2. Evolution of q}U for all Ri, 1±45 cm grid. Symbols : D–––D, Ri¯ 0; *–––*,
Ri¯ 0±04; V–––V, Ri¯ 0±08; ^–––^, Ri¯ 0±12; k–––k, Ri¯ 0±19, n–––n, Ri¯ 0±44.
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F 3. Evolution of θ«}T
!

for all Ri, 1±45 cm grid. Symbols same as in figure 2.

fluctuations. For u« and w«, Rohr et al. (1988b) obtain minima at τ of 2 and 3
respectively, while Holt et al. (1992) obtain values of 2 and 3±5–4±0 and Gerz et al.
(1989) obtain values of less than 0±5 and 3±5. This is reasonably good agreement,
especially considering the differences in initial conditions between the experiments and
the simulations.

The evolution of θ«}T
!
, the normalized r.m.s. temperature, is plotted in figure 3. It

is clear that the behaviour of the r.m.s. temperature is closely linked to that of q. When
q is increasing downstream, θ« also increases downstream. When q becomes stationary,
θ« increases initially and levels off at between 300 and 400 cm downstream (τ¯ 7–9).
This location is an increasing function of decreasing grid mesh size. When q is
decreasing, θ« increases initially to a maximum at a downstream position of about
200 cm (τ¯ 4±5), and then decays throughout the remainder of the test section. Rohr
(1985) finds the density fluctuations to decrease for τ" 6 in all cases, while Holt et al.
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Ri
cr

Grid mesh size (cm) (ReΛ)i
(Sq#}ε)

i
ReΛ Sq#}ε

Present results
0±04 5±08 32±5 0±30 190±2 7±75
0±08 2±54 24±0 0±38 146±8 9±75
0±19 1±45 15±1 0±42 142±9 22±45
0±19 0±64 13±2 0±62 131±7 35±80

Holt et al. results
0±0575 — 25±8 5±74 69±4 12±22
0±0875 — 51±7 5±74 115±6 11±00
0±1125 — 103±5 5±74 139±7 11±55
0±15 — 104±0 5±78 291±4 10±81
0±21 — 80±1 2±74 343±3 10±66

T 2. Ri
cr

as a function of (ReΛ)i
and (Sq#}ε)

i
, and ReΛ and Sq#}ε for τ" 10, where i denotes initial.

(1992) and Gerz et al. (1989) find results qualitatively identical to ours. Quantitatively,
both of the simulations report τ-values of between 2 and 4 for the region in which the
density fluctuations change behaviour.

3.2. Dependence of Ri
cr

on shear parameter and Reynolds number

Using the Ri
cr

criterion that the turbulent kinetic energy become independent of
downstream coordinate x, as discussed in §2, Ri

cr
was estimated from the runs for each

of the four different mesh size grids. The results are given in table 2, along with the
results of the numerical simulations of Holt et al. (1992). Uncertainties in comparing
the experimental and DNS results arise from the very different initial conditions in the
two cases. For example, the Holt et al. (1992) DNS used an initial ‘ top-hat ’ velocity
energy spectrum which differs greatly from the initial experimental spectrum. One
hopes that comparison of the two cases becomes more rigorous for long time
evolutions in the DNS and far downstream locations in the experiments. With this in
mind, we compare in table 2 the initial values of ReΛ and Sq#}ε, as well as values
calculated far downstream (τ" 10). Here, ReΛ ¯ qΛ}ν, where Λ¯ u«$}ε. This
definition differs slightly from that used by Holt et al.

For our data, Ri
cr

increases from 0±04 to 0±12–0±19 as the initial value of Sq#}ε
increases by a factor of 2 and the corresponding ReΛ decreases by a factor of 2±5. If the
initial values of Sq#}ε and ReΛ had been varied independently in the experiments, then
we could conclude that the increase in Ri

cr
with increasing Sq#}ε agrees with the

behaviour of the Jacobitz et al. (1996) simulations, while the decrease of Ri
cr

with
increasing ReΛ disagrees with these simulations and those of Holt et al. (1992). But, as
explained above, the initial values of the two parameters could not be varied
independently in the experiments. We therefore pursue the alternative of comparing
results for large DNS evolution times with experimental results obtained further
downstream, after the shear and buoyancy have had a strong effect on the flow
evolution.

As seen in table 2, making this comparison for large values of τ, the increase in Ri
cr

is accompanied by an increase of 4±6 Sq#}ε as ReΛ decreases by only 30%, so that the
variation in ReΛ is an order of magnitude smaller than that in Sq#}ε. Ignoring the
possible effects of the relatively small change in ReΛ, and giving precedence to the data
for large τ over the initial data, our experiments show that Ri

cr
is an increasing function

of Sq#}ε. One way to rationalize this result is to note that, by scaling the terms in
equation (4), Sq#}ε is proportional to the ratio of the turbulence production and
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F 4. Evolution of R
uw

for all Ri, 1±45 cm grid. Symbols same as in figure 2.

dissipation terms. As Sq#}ε increases, the relative value of the dissipation decreases,
and with less dissipation, the stratification necessary to change the behaviour of q will
increase. Thus we would expect that Ri

cr
will be an increasing function of Sq#}ε.

Indeed, recent simulations of the present flow by Jacobitz et al. (1996) show that Ri
cr

is an increasing function of Sq#}ε for small initial values of Sq#}ε covering the present
range of 0±3 to 0±6. In the simulations, for a fixed initial value of Ri

cr
, as Sq#}ε is further

increased, Ri
cr

reaches a maximum and then decreases for large values of Sq#}ε, as
would be expected from the rapid-distortion analysis of Hunt et al. (1988).

Rohr et al. found Ri
cr

¯ 0±25³0±05, which is consistent with the trend of our data
in view of their large values of Sq#}ε of 20 for τ¯ 10, and ReΛ of greater than 200. Gerz
et al. obtain a value of about 0±10 for their simulation, which was for ReΛ of 47±2.
Neither Rohr et al. nor Gerz et al. examined the behaviour of Ri

cr
with Sq#}ε. Holt et

al. (1990) performed some simulations in which Sq#}ε was increased to 50 and 100.
Although the results of these runs are not definitive, increasing Sq#}ε apparently
increased the value of Ri

cr
in these simulations, in agreement with our results. Our data

show an apparent decrease in Ri
cr

with an increasing ReΛ, but this trend may not be
significant in view of the small range of variation of RΛ and the simultaneous much
larger changes in Sq#}ε, whose influence may dominate that of ReΛ. This conjecture
appears to be supported by the results of Holt et al. as shown in table 2. For nearly
constant Sq#}ε they found that an increase of Ri

cr
over the range we observed required

a fivefold increase in ReΛ.
There are many other factors which could affect the value of Ri

cr
. These include

Nθ#}χ, the scalar analogue of the dimensionless shear, the ratio of fluctuating potential
energy "

#
gθ#}Θ(dΘ}dz) to the turbulent kinetic energy, as well as the Prandtl or Schmidt

number of the flow. The effect of Pr or Sc seems especially significant, as Rohr et al.
and Holt et al. find that larger values of Pr or Sc lead to lower correlations for the
velocity and the density, which may then lead to higher values of Ri

cr
(for example,

Rohr et al.’s value of 0±25).
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F 5. Evolution of R
wθ for all Ri" 0, 1±45 cm grid. Symbols same as in figure 2.

3.3. Momentum and heat-flux correlations

The evolution of the Reynolds stress correlation coefficient, R
uw

¯ uw}u«w«, is shown
for the 1±45 cm grid in figure 4. For the unstratified case, R

uw
quickly reaches a

maximum of around 0±55–0±60, somewhat higher than the value of 0±48 found by
Tavoularis & Karnik (1989). The addition of stratification produces a small decrease
in value for R

uw
until the Ri¯ 0±19 case, for which the value for R

uw
dramatically

decreases downstream of the maximum. For the Ri¯ 0±44 case, R
uw

was, for all the
grids, less than 0±10. The evolution of R

uw
was the same for all of the grids. Similar

variations of Reynolds stress (and vertical heat transfer) with Ri were observed in wind
tunnel experiments by Webster (1964) and Komori et al. (1983) in a stably stratified
open channel flow. The present results also agree well with the results of both Rohr et
al. (1988b), and Holt et al. (1992), who find R

uw
to be slowly decreasing with Ri for

Ri! 0±25, and then dramatically decreasing for Ri& 0±25, while Gerz et al. (1989) find
a more even decrease of R

uw
with Ri. Quantitatively, our final values for R

uw
are about

20% higher than those of Rohr et al. and Holt et al. for similar Ri.
The evolution of the buoyancy-flux correlation coefficient R

wθ ¯wθ}w«θ« is shown
in figure 5. The behaviour is similar to that seen for the Reynolds stress correlation. For
all of the grids, R

wθ decreases as Ri is increased. However, for no run in these
experiments was a net flux reversal (i.e. wθ" 0) observed. The maximum value of R

wθ

reached in our experimental results was ®0±75, a very high value reached rarely in
unsheared experiments. The values obtained by Rohr (1985) were considerably lower,
perhaps due to the higher Schmidt number of his flow. Rohr also did not observe a
buoyancy-flux sign reversal. Holt et al. did not find any such flux reversal until Ri"
0±50. Quantitatively, the simulation had a much higher maximum value for R

wθ, higher
in fact than any value reported in an experimental study, including the non-sheared
results of Lienhard & Van Atta (1990), Thoroddsen (1991), and Yoon & Warhaft
(1990). This differs from the Reynolds stress behaviour, where the maximum reached
by R

uw
was greater in the experiment than in the simulation. The Gerz et al. simulation

reported flux reversals for Ri as low as 0±3, disagreeing with our experiments, Rohr’s
experiments, and Holt et al.’s simulation.
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F 6. Evolution of ε, the viscous dissipation, for all Ri, 1±45 cm grid.
Symbols same as in figure 2.
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F 7. Evolution of χ, the scalar dissipation, for all Ri" 0, 1±45 cm grid.
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We have seen that the addition of stable stratification to a uniform-mean-shear
turbulent flow reduces the value of both the buoyancy flux and the Reynolds stress in
the flow. The reduction of the Reynolds stress is the result of buoyancy forces breaking
the large coherent structures that result from the interaction of the turbulence and the
mean shear, while the reduction in R

wθ is the result of the buoyancy attempting to
restratify the fluid.
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3.4. Dissipation

The results of the dissipation-rate estimation calculations are shown in figure 6 for the
1±45 cm grid. For τ! 7, the dissipation is roughly independent of Ri. For τ" 7, the
dissipation becomes a strongly decreasing function of Ri, with there being
approximately an order of magnitude difference between the Ri¯ 0 and Ri¯ 0±44
dissipation estimates by the end of the test section (τ¯ 12). The individual strain rates
which combine to form our dissipation estimate behave qualitatively identically to
their sum. The difference in the final values of q between the Ri¯ 0 and the Ri¯ 0±44
cases is a factor of 3, which is considerably smaller than the difference in the final values
of ε. This suggests that buoyancy forces influence dissipation more strongly than they
do turbulent kinetic energy.

Our results compare well with those of Rohr (1985) for τ" 7, showing the same
general evolution pattern and the same one order of magnitude spread in ε at τ¯ 12.
For τ! 7, Rohr’s data are clearly a decreasing function of Ri, whereas ours are not.
Holt (1990), who ‘tuned’ his code to match Rohr’s results, presents results qualitatively
similar to those of Rohr.

The evolution of the rate of scalar dissipation is shown for the 1±45 cm grid in
figure 7. The dissipation was estimated using the isotropic formula:

χ¯ 6α 0¥θ¥x1
#

. (7)

Using the isotropic formula in this case will lead to errors in estimating the value of χ,
as discussed in Thoroddsen & Van Atta (1993), but the difficulties involved in getting
accurate strain rate estimations for the non-streamwise directions forces us to use the
isotropic formula. The results are similar for all of the grid configurations, differing
only in magnitude. For all of the grids and all Ri, χ started as a near constant, and then
gradually decreased, with the rate of decay increasing until the end of the test section,
in most cases. In some low-Ri cases where θ« was increasing throughout the test section,
the dissipation increased for large τ.

Unfortunately, owing to the small diffusivity of salt in water, as discussed in §1,
Rohr (1985) was unable to estimate his scalar dissipation. Our results are thus the first
experimental estimation of the scalar dissipation in a uniform-velocity-shear stably
stratified flow to date. The χ results of Holt (1990) are difficult to compare with our
results, as his initial conditions include having θ«(τ¯ 9)¯ 0. The results of Gerz et al.
do not agree with ours, as they find χ increasing everywhere for Ri!Ri

cr
. This

behaviour differs from the unsheared results of Thoroddsen (1991) and Lienhard &
Van Atta (1990), for which there is no region of nearly constant χ.

3.5. Mixing efficiency

A quantity of great interest to oceanographers in the mixing efficiency or flux
Richardson number, defined by Ivey & Imberger (1991) as

R
f
¯

1

1(ε}B)
, (8)

where B is the buoyancy term in the turbulent kinetic equation (4). Ivey & Imberger
(1991) found two semi-empirical curves for the behaviour of R

f
as a function of the

turbulent Froude number Fr
T

¯ (L
O
}L

t
)#/$, where L

O
¯ (ε}N$)"/# is the Ozmidov scale,

which estimates the largest scales not constrained by buoyancy, and L
t
¯ θ«}(dT}dz)
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Open circles are data from the present experiments and the solid line the semi-empirical predictions
of Ivey & Imberger (1991).

is the overturning scale of the turbulence. Our results are plotted with the Ivey &
Imberger curve in figure 8. For Fr

T
" 2, our data and the Ivey & Imberger curve agree

very well. For Fr
T

! 2, there is a lot of scatter in our data, which precludes any
assessment of validity for the Ivey & Imberger curve at these values of Fr

T
. The large

amounts of scatter for Fr
T

! 2 suggests that mixing in this region is dominated by
powerful but rare mixing events. Also, our results show R

f
values of up to 0±35, larger

than seen in previous experiments. This is consistent with the idea of mixing dominated
by rare events as, if these events are spaced randomly, a large number of them could
lead to abnormally high values for R

f
.

3.6. E�olution of terms in the turbulent kinetic energy and temperature �ariance
equations

The evolution of the three terms on the right-hand side of equation (4) is plotted for
Ri!Ri

cr
and Ri¯Ri

cr
in figure 9. In both cases, the buoyancy term is very small

compared to the production and dissipation terms, and is numerically (but not
physically) unimportant in the turbulent kinetic energy balance of the turbulence.
Looking at the production and the dissipation terms, when Ri!Ri

cr
, as the flow

develops downstream, the production, initially much smaller than the dissipation,
eventually grows larger than it in magnitude. We then have production " ε, which
produces increasing q. In the case shown in the figure, we find that the growth rate for
q predicted from a balance of the three terms matches the actual growth rate (averaged
over the last 1±5 m of the test section) within 10%. In general, our agreement is not so
good, being within 25%. When Ri"Ri

cr
, the dissipation term remains larger than the

production term throughout the test section, with the result that q decays. The
predicted rates of decay from the three terms are accurate to within 30% of the actual
decay of q, with the prediction being less than the actual value. This suggests that we
have underestimated the dissipation in the flow, by amounts of up to 30%. Itsweire
et al. (1993) suggest that using only the streamwise-direction strain rates, as we have
done, could lead to underestimating the dissipation by up to a factor of 4. However,
unlike our experiments, there was a large initial small-scale anisotropy in their
simulations, which may account for at least part of the difference in the estimates.
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F 9. Term evolution of turbulent kinetic energy equation: (a) 1±45 cm grid, Ri¯ 0±04; (b)
0±64 cm grid, Ri¯ 0±44. Symbols : D–––D, production term; *–––*, buoyancy term;V–––V,
dissipation term.

The two terms on the right-hand side of equation (6), the scalar variance equation,
are plotted in figure 10 for both of the cases discussed above. In all of these results, we
find that the predicted change in θ« is overestimated (i.e. growth rates too high, decay
rates too low). This result suggests that we have underestimated the temperature
dissipation by amounts of up to 50%. This is in agreement with the experiments of
Thoroddsen & Van Atta (1996), who found that the temperature strain rates are highly
anisotropic for stably stratified flows, and that using only the longitudinal strain rate
will underestimate the dissipation. The simulations of Itsweire et al. (1993) also show
that using only the streamwise temperature strain may greatly underestimate of χ.
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F 10. Term evolution of scalar variance equation: (a) 1±45 cm grid, Ri¯ 0±04; (b) 0±64 cm
grid, Ri¯ 0±44. Symbols : D–––D, buoyancy term; *–––*, dissipation term.

4. Anisotropy in the turbulence

4.1. Large-scale anisotropy

In order to study the influence of buoyancy on the anisotropy of the flow at large
scales, we first consider the evolution of the ratio w«}u«, shown in figure 11(a) for the
1±45 cm grid. The results are qualitatively very similar for the different grids. In all
cases, w«}u« decreases from a value close to 1±0, the isotropic value, near the grid, to
a minimum near 300 cm downstream (τC 7±0) ; w«}u« then either increases slightly or
holds a level value for the remainder of the evolution of the turbulence. Decreasing the
mesh size monotonically increases the minimum value of w«}u« from 0±55 for the
5±08 cm grid to 0±38 for the 0±64 cm grid. The evolution of �«}u« is similar to that of
w«}u«, with two main differences : �«}u« is higher than w«}u«, due to the preferential
action of the buoyancy term in the w« equation, which acts as a direct sink for w« ; and,
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F 11. Evolution of w«}u« for all Ri, 1±45 cm grid: (a) as a function of downstream position,
(b) as a function of ε}νN#. Symbols for (a) are the same as in figure 2, and symbols for (b) are : y,
Ri¯ 0±04; E, Ri¯ 0±08; _, Ri¯ 0±12; U, Ri¯ 0±19; +, Ri¯ 0±44.

�«}u« does not reach a minimum at τ¯ 7 as does w«}u«, but rather continues to decrease
throughout the entire run, which extends to about τ¯ 12. Both the present results and
those of Thoroddsen & Van Atta (1992) show that buoyancy affects the r.m.s. lateral
velocity about half as much as it does the r.m.s. vertical velocity. The behaviour seen
in earlier experiments and simulations is generally qualitatively similar to our results,
as discussed in detail by Piccirillo (1993). One exception is that the degree of anisotropy
in Gerz et al. (1989) does not appreciably increase with increasing Ri, in contrast to the
present results.

Comparing our results for Ri¯ 0±44 (N¯ 2±23) to those of Thoroddsen & Van Atta
(1992) for NC 2, we find that the addition of shear decreases w«}u« by about 10% over
the unsheared results. Tavoularis & Karnik (1989) summarize all of the previous
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research on turbulence in unstratified, uniformly sheared flows to find an asymptotic
value for w«}u« of 0±66, which is within the range of our values of 0±77, 0±70, 0±70 and
0±64 for our 5±08 cm, 2±54 cm, 1±45 cm and 0±64 cm grids, respectively, and an
asymptotic value of 0±73 for �«}u«, as compared with our values of 0±86, 0±80, 0±75 and
0±80.

Yamazaki (1990) has studied the evolution of w«}�« in the ocean thermocline, and he
finds significant anisotropy for ε}νN#" 200. The dimensionless parameter ε}νN#

(Dillon & Caldwell 1980) is used frequently in the oceanic literature as a primary
descriptor of the state of the turbulence (for example, by Gibson 1980). There is some
disagreement as to the possible physical significance of this quantity, as Gargett,
Osborn & Nasmyth (1984) have referred to it as a buoyancy-based Reynolds number,
while other researchers (for example, Gregg 1987) have referred to it as a Froude
number. To compare with Yamazaki’s results, our data for w«}u« are plotted against
ε}νN# in figure 11(b). Our results show that for ε}νN# of up to at least 2000 there
remains a significant level of anisotropy in the flow, as in Yamazaki’s thermocline data.
This suggests caution in using isotropic formulae for ε}νN#! 2000. Indeed, Gargett et
al. (1984) find that their ocean spectra do show deviations from isotropic behaviour for
ε}νN#! 2000, although the inertial scales are roughly isotropic for ε}νN#" 200.

4.2. Small-scale anisotropy

One measure of small-scale anisotropy in the flow is how much the values of the ratios
of different r.m.s. strain rates differ from what their values would be for isotropic
turbulence. The ratio of the r.m.s. horizontal gradients of the vertical and streamwise
velocity fluctuations, S

wu
, is

S
wu

¯
(¥w}¥x)#

(¥u}¥x)#
. (9)

S
wu

is shown in figure 12(a) for the 1±45 cm grid. The results are remarkably uniform
for each of the grids, with S

wu
decreasing from a value of close to 2 (the isotropic value)

near the grid to a minimum at x¯ 250–300 cm downstream (τ¯ 5±5–7±0), whereupon
it levels out, or, if the turbulent kinetic energy is growing, it increases back towards a
value of 2±0. S

wu
is a decreasing function of Ri, and it is an increasing function of the

grid mesh size. The amount of anisotropy is very large. For example, for Ri¯ 0±44, for
the 1±45 cm grid, S

wu
! 0±25, a value less than 1}8 of the isotropic value. The

anisotropy is numerically greater than for the variance (w«}u«)#. For unsheared, non-
stratified, decaying turbulence, Thoroddsen & Van Atta (1992) found that the value of
S
wu

remains near 2±0. For the present unstratified (Ri¯ 0) data, one sees that the
anisotropy induced by the mean shear alone is large, and while the turbulence is still
decaying, becomes about 2}3 as large as the maximum anisotropy produced by the
combined effects of shear and stratification. The robust increase back toward the
isotropic value of 2±0 as the turbulence grows for Ri¯ 0, and a similar, weaker, trend
for small values of Ri, may be interpreted as an expected consequence of the increasing
value of the Reynolds number in the downstream direction in those cases. The clear
effect of buoyancy in enhancing small-scale anisotropy contradicts the traditional
picture of buoyancy as a force which primarily affects that largest scales of turbulence.
In fact, in a relative sense, buoyancy has more effect on the small scales of the flow.

Similar behaviour was found in the evolution of S
vu

, defined as

S
vu

¯
(¥�}¥x)#

(¥u}¥x)#
. (10)



78 P. Piccirillo and C. W. Van Atta

2.0

1.5

1.0

0.5

0 100 200 300 400 500
Downstream position, x (cm)

(a)

Swu

(b)

2.5

2.0

1.5

0.5

100 101 102 103 104 105

ε/νN2

1.0

Swu

F 12. Evolution of S
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¯ (¥w}¥x)#}(¥u}¥x)# for all Ri, 1±45 cm grid: (a) as a function of
downstream position, (b) as a function of ε}νN#. Symbols are the same as in figure 11.

As in the case of S
wu

, anisotropy increases with Ri, from S
vu

values close to 2 for
Ri¯ 0 to values between 0±50 and 0±75 for Ri¯ 0±44 at τ¯ 12 (compared with values
between 0±23 and 0±50 for S

wu
). S

vu
continues to decline throughout the entire length

of the test section, in contrast to S
wu

, which reaches a minimum and then levels off. For
their unsheared flow, Thoroddsen & Van Atta (1996) report a minimum value for S

vu

of 0±75 for N¯ 3±03 rad s−".
Rohr et al. (1988b) do not report any strain-rate data. The simulation data of Holt

et al. (1992) has been used by Itsweire et al. (1993) to estimate all nine strain rates :

s
ij
¯ 0¥ui

¥x
j

1#, (11)

which are needed to measure the dissipation. Unfortunately, as mentioned earlier, for
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these DNS and those of Gerz et al., the small scales are initially very anisotropic,
hindering comparison with our experiments, for which the small scales are initially
nearly isotropic. For example, in the Holt et al. results, S

wu
is much less than the

isotropic value of 2 for all of the Ri shown, with a minimum value of 0±5 reached at
Ri¯ 0±37, higher than our result of 0±37 for the 5±08 cm grid with Ri¯ 0±44. Their
Ri¯ 0 case has an S

wu
of 1±0, much lower than our value of 1±5–1±7 for the 5±08 cm

grid case.
Gargett et al. (1984) suggest that for ε}νN#" 200, only one strain rate is needed to

compute the viscous dissipation. To test this result, we plotted S
wu

against ε}νN#, as
shown in figure 12(b). In our w«}u« results, for ε}νN#! 2000, there is a significant
amount of anisotropy in our data, which precludes using only one strain rate to
calculate the dissipation. Yamazaki & Osborn (1990), using thermocline data, find
significant anisotropy for S

wv
when ε}νN#! 100. However, given our S

wu
and S

vu

results, it seems likely that S
wv

is not a good measure of anisotropy, as both S
wu

and
S
vu

could decrease in such a way as to obscure the anisotropy in the strain rates. It
seems a safe proposition that for ε}νN#! 2000, stratified turbulence is not isotropic,
and assuming it to be so could lead to serious errors.

5. Spectral evolution of the turbulence

5.1. Power spectra

Figure 13 shows representative plots of the evolution of the u-component power
spectrum E

uu
( f ). Initially, for all Ri studied, E

uu
( f ) decays at all frequencies. This

situation persists to xC 150 (τC 3±5), when the large-scale (small-frequency) energy
begins to grow, while the small-scale energy continues to decay. In this mixed
evolution, shown in figure 13(a) for Ri¯ 0, and in figure 13(b) for Ri¯ 0±19, the
frequency at which the spectra remain constant, f

c
, does not change as the flow evolves

downstream. This suggests that the shear forces and the dissipative forces each have
very distinct scales of control in the flow, and that when the shear dominates the
dissipative region, it dominates it as a whole, not piecemeal.

For Ri¯ 0, there is another transition in the spectral behaviour, at τ¯ 7, between
mixed evolution, and evolution where the spectra are growing at all scales, shown in
figure 13(c). This transition always occurs in the same way: energy at frequencies
higher than f

c
stops decreasing and begins to increase as a unit. When 0!Ri!Ri

cr
,

the mixed evolution behaviour in E
uu

( f ) persists throughout the test section. When
Ri"Ri

cr
, the mixed evolution behaviour is slightly modified, in that the large-scale

energy is very nearly constant, while the small-scale energy decreases.
The behaviour of E

ww
( f ) and E

vv
( f ) is almost exactly the same, for all Ri, as E

uu
( f ).

The only qualitative difference is that for Ri"Ri
cr

the E
ww

( f ) spectra increase at
large scales while decaying at small scales, in contrast to E

uu
( f ), where the large-scale

spectra are constant. Quantitatively, the frequency f
c
is not same for the three power

spectra. However, no clear pattern in the value of f
c
could be found.

Rohr et al. (1988b) also found for Ri"Ri
cr

that the small-scale energy is decaying
while the large-scale energy is constant. They interpret this as showing the creation of
internal waves in the flow, and they use a Kolmogorov scaling to argue that the mean
shear’s affect on the flow at this Ri is small. However, from our strong evidence that
the large scales in our flow are continuing to actively mix (see §5.2), it appears that for
our flow the mean shear is still creating energy at the large scales.

The spectra of Holt et al. (1992) show some significant differences when compared
to our results. For E

uu
( f ), Holt et al. find a similar mixed behaviour to ours for Ri!
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F 13. Evolution of E
uu

( f ), showing the two types of spectral evolution seen in all the results.
(a) Initial evolution of E

uu
( f ) for the 2±54 cm grid, with Ri¯ 0. Symbols : ——, x¯ 175±3 cm; ----,

x¯ 228±6 cm; –––, x¯ 320±0 cm. (b) Final evolution of E
uu

( f ), 1±45 cm grid, with Ri¯ 0±19.
Symbols : ——, x¯ 320 cm; ----, x¯ 419±1 cm; –––, x¯ 495±3 cm. (c) Final evolution of E

uu
( f ) for

the 2±54 cm grid, with Ri¯ 0. Symbols : ——, x¯ 350±5 cm; ----, x¯ 419±1 cm; –––, x¯ 495±3 cm.
Both (a) and (b) show mixed spectral evolution, where the spectrum increases at low wavenumbers
and decreases at high wavenumbers, while (c) shows spectral evolution where the spectrum is
increasing at all wavenumbers.

Ri
cr
. When Ri"Ri

cr
, the frequency f

c
changes as the flow evolves, unlike in our results.

For E
ww

( f ), at all Ri reported, the frequency f
c
again changes as the flow evolves. Gerz

et al. (1989) do not report on spectral evolution.
Holt et al. (1992) have estimated the nonlinear streamwise energy transfer N

uu
( f )

(defined in Holt 1990) as a function of Ri, and found that as Ri increases, N
uu

( f )
decreases. This result suggests that at sufficiently high Ri, the turbulence will have the
mixed spectral evolution found in both our results and Holt et al.’s, in which the large
scales increase in energy while the small scales decrease in energy. This is because with
decreased energy transfer, energy will not be able to move from large to small scales
to offset the small-scale energy lost to dissipation. Thus, the small scales will be
destroyed by viscous forces while the large scales continue to grow due to the mean
shear.

Suppression of spectral energy transfer occurs through the same mechanism by
which buoyancy affects non-sheared flows: suppression of overturns. However, in the
case of sheared flows, a sufficiently large mean shear can dominate the behaviour of the
largest scales of the flow, with buoyancy dominating at smaller scales. The resultant
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F 14. Final evolution of Eθθ( f ), for (a) 2±54 cm grid, with Ri¯ 0±04; (b) 1±45 cm grid, with
Ri¯ 0±19; and (c) 0±64 cm grid, with Ri¯ 0±44. Symbols for all are the same as in figure 13(b).
(a) Shows spectral evolution where the spectrum is increasing at low wavenumbers and stationary
at high wavenumbers, while (b) and (c) show mixed spectral evolution.

suppression of overturns in this energy range results in a reduction of the cascade of
energy transfer to smaller scales.

Since the suppression of spectral energy transfer by buoyancy forces is done
preferentially, the transfer of vertical velocity turbulent energy (w«) will be more
inhibited by buoyancy forces than the transfer of lateral- or streamwise-velocity
turbulent energy (�« and u«). One might expect the small scales in the flow to reflect this
anisotropic transfer. While this preferential suppression of energy transfer may be
responsible for the large degree of small-scale anisotropy, anisotropy at small scales
could alternatively be created directly by buoyancy forces, as suggested by Thoroddsen
& Van Atta (1992).

The evolution of the temperature spectrum Eθθ( f ) for the 2±54 cm grid runs is shown
in figure 14, for Ri¯ 0±04, 0±19 and 0±44. As with the velocity spectra, the evolution of
the temperature spectra is clearly of the mixed type. When Ri!Ri

cr
, the spectra evolve

through the mixed evolution described above, where the spectra are increasing at the
large scales and decreasing at the small scales, to a different mixed evolution, where the
spectra are increasing at large scales and roughly constant at small scales (figure 14a).
When Ri¯Ri

cr
(figure 14b), the mixed evolution seen for the velocity spectra persists

throughout the test section, with one difference: the frequency f
c
is continually shifting

to lower frequencies (bigger scales), starting out at around 30 Hz at τ¯ 1 and ending
up at around 5 Hz at τ¯ 12. This suggests that eventually θ« must decrease, as there
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F 15. Evolution of fCo
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will be no scales remaining that are able to increase their energy. Note that the velocity
and temperature spectra, which are Fourier transforms of two-point second-order
correlations, continuously evolve even for Ri¯Ri

cr
, after the single-point second-

order moments have become constant. For Ri"Ri
cr

(figure 14c), the spectra show the
mixed evolution seen for Ri¯Ri

cr
, but now the large-scale energy is increasing very

slowly, and is overwhelmed by the energy decrease at small scales. The results of Rohr
et al. (1988b) are qualitatively identical to our results, while Holt et al. and Gerz et al.
do not report temperature spectral results.

5.2. Buoyancy-flux cospectral e�olution

For the Ri¯ 0±44 case, we find 0!R
wθ ! 0±10, indicating that while there is no net flux

reversal, it is possible that for some range of frequencies there may be a local flux
reversal. Figure 15 shows three cospectral plots in area-preserving coordinates for
Ri¯ 0±44. A negative value of Co

wθ( f )¯Re[E
wθ( f )] signifies downgradient flux, while

a positive value signifies countergradient flux. In the region from 10 Hz to 100 Hz
(corresponding to scales of 3 cm down to 3 mm) Co

wθ( f )" 0 and thus the flow is
restratifying by countergradient buoyancy flux at these small scales. Similar behaviour
for large Ri and Pr¯ 1 was seen in the simulation of Holt et al. (1992). The present
experiments thus verify the physical reality of one of the most interesting predictions
of the simulations. Gerz et al. also find small-scale flux reversal, although only at higher
Prandtl number. The presence of shear has a dramatic effect on the behaviour of the
buoyancy flux, in that now flux reversals, which occurred at the largest scales of the
unsheared flow (Lienhard & Van Atta 1990), are now occurring at small scales. The
results of Rohr et al. are not conclusive in this region because of the large wavenumber
bin size necessary in the reduction of their data.

An important use of Co
wθ( f ) is as a diagnostic tool for assessing the presence of

linear internal waves. As discussed by Stewart (1969), if the phase angle φ between the
w- and θ-fluctuations, where φ¯®Qu

wθ( f )}Co
wθ( f ), is 180°, then the flux is down-

gradient, while φ¯ 0° implies restratification, and φ¯ 90° shows the presence of linear
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internal waves. In figure 16, we show two phase-angle plots, for two of the data sets
shown in figure 15. There is clearly evidence of large-scale downgradient flux, where
φ is 180°, and of small-scale restratification, where φ is 0° (Qu

wθ( f )¯ Im[E
wθ( f )).

We see no indication in any of our results of phase-angle behaviour characteristic
of linear internal wave activity. The restratification is moving to larger scales as the
flow evolves, which suggests that buoyancy effects are being felt by the turbulence at
larger scales as the flow evolves. In all our results, however, we clearly see that the
largest scales of the flow are producing downgradient flux. The Reynolds stress
cospectrum Co

uw
( f )¯Re[E

uw
( f )] was also investigated. Our results showed that for

all Ri, Co
uw

( f ) remained positive at large scales, indicating that even at high Ri, the
mean shear is creating energy in the flow at the largest scales.

6. Conclusions

The value of the critical Richardson number Ri
cr

for a stably stratified homogeneous
shear flow was found to be a strongly increasing function of the shear parameter Sq#}ε,
in agreement with the behaviour found for small initial values of Sq# in numerical
simulations by Jacobitz et al. (1994, 1996). For sufficiently small values of the shear
number, Ri

cr
takes values an order of magnitude lower than the critical value of 1}4

obtained by Miles (1961) and Howard (1961) as an upper bound for growth for
disturbances via linearized stability analysis or stably stratified laminar flow. This
strong dependence of Ri

cr
on Sq#}ε suggests that the shear number may also play an

important role in more complex stably stratified turbulent shear flows, such as those
occurring in the atmosphere and oceans, and should be taken into account when
attempting to correlate turbulent stirring and resultant mixing with values of Ri.

The large scales of the flow evolved from an initial nearly isotropic state to a very
anisotropic one. The degree of anisotropy increased with increasing Richardson
number Ri. The persistent small-scale anisotropy for Ri"Ri

cr
is similar to that found

by Thoroddsen & Van Atta (1992) for unsheared decaying stably stratified turbulence.
For Ri¯ 0, the small scales robustly returned toward a state of local isotropy as the
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turbulent kinetic energy grew, and a similar, but much weaker, trend was observed for
stratified flows with Ri!Ri

cr
. The mixed evolution of the velocity power spectra,

where the energy at large scales increased while the energy at small scales decreased,
suggests that the anisotropy at the small scales is caused by buoyancy forces reducing
spectral transfer to these scales. For sufficiently large Ri countergradient heat flux
occurred at small scales, as found in the earlier simulations of Gerz et al. (1989) and
Holt et al. (1992).

This study was funded by the Office of Naval Research, Small Scale Physical
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Jeffrey Koseff of Stanford University, Professor Fred Browand of the University of
Southern California, Dr Ken Helland of Data Ready Corporation, and Professor
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